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This paper considers an urgent problem of assessing spatial position and geometric
characteristics of environmental objects from images. An approach was developed based
on combining the results of object detection using the Mask R-CNN model and the
reconstruction of depth maps obtained using the RealSense camera. We evaluated the
class-averaged values of the relative error in determining the size of objects for test sets
of images formed at various levels of scene illumination: 0.1449, 0.3313, 0.6332. Also,
within the experiments relative deviation values were obtained when determining the
spatial positions of objects: 0.1010, 0.1624, 0.3477.
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Introduction

Today cyber-physical systems (CPS) based on the use of cloud technologies, Internet of things
technologies, artificial intelligence, and machine learning methods are becoming increasingly
widespread. CPS [1, 2] include various sensor devices, that collect data on the physical
properties of the cyber-physical environment. Interpretation of this data can be used to
control the state of the system or expand the functionality of such systems. One of the
urgent problems identified in the context of determining the properties of the cyber-physical
environment is the problem of identification, determination of spatial coordinates, location
and size of environmental objects using various sensor devices based on data from various
modalities.

This study was carried out in the context of the CPS, which implements information
services to employees of a scientific organization [3]. Current study aims to expand the
capabilities of this CPS to interact with objects of the external environment. This system is
equipped with a variety of video cameras located throughout its deployment area. Thus, this
work is focused on the development of an approach to solving the problem of estimating the
positions and geometric characteristics of environmental objects from images recorded by the
RealSense D435 depth camera [4] in real time. As environmental objects can be considered
furniture, peripherals, office equipment and people. The development of such a solution allows
to maintain object records and control changes in various premises. The implementation of
the proposed approach can also be used as an independent object tracking system.
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1. Related work

Developing an approach to solving the problem of estimating the position and geometric
characteristics of environmental objects from images involves solving the following group
of main problems: image segmentation; objects classification; estimation of the distances
between the camera lens and detected objects.

Most modern methods for classification and detection of object outlines in images are
based on the use of artificial neural networks [5, 6], however, training of a neural network from
scratch requires a lot of time and a significant set of pre-labeled data. Thus, within this study,
pretrained models of neural networks presented on the Tensor Flow project website [7] were
analyzed. The Tensor Flow project contains neural network models based on architectures
such as Mobilenet [8], Fast R-CNN [9] and Mask R-CNN [6]. According to the results of the
analysis, it was decided to use a neural network based on the Mask R-CNN architecture [6],
since this neural network is capable to determine not only areas, but also specific boundaries
of objects. Furthermore, the speed of this neural network allows it to work in real time
even on cameras with low frame rates. One of the fastest-performing implementations of
the Mask R-CNN neural network is the Mask R-CNN Inception v2 configuration trained on
the COCO dataset [10]. Compared to the ResNet configurations [11], the processing speed
of one frame by the neural network in the considered configuration is 5–10 times faster than
analogues [6]. A characteristic difference of the Inception configuration is the use of the 3D
Inception method for the spatiotemporal analysis of movement signs of visual objects in
a video stream [12].

Within current study it is important to note that determining the position and size of
an object in global coordinates based on the object’s position in image coordinates, requires
estimating the distance between camera lens and the detected object. Estimation of such dis-
tances can be implemented using specialized hardware, such as LIDAR [13], Kinect [14] and
RGB-D cameras [4]. Scanning RGB-D cameras and lidars generate a depth map that allows
determining the position and spatial characteristics of captured objects in the scene. Esti-
mating of distances between camera lens and the detected objects can also be implemented
using neural network based methods [15–17].

Most known methods for estimating the size and position of objects in space are based
on a combination of depth cameras with stereoscopic vision systems, traditional machine
vision algorithms or neural network models, heuristic methods and algorithms combining
them. So, the authors of [18] explore the capabilities of the Microsoft Kinect v2 sensor using
Kinect Fusion algorithms to identify three-dimensional objects and consider the possibility
of combining the sensors used. For object detection and estimation, the authors of [19] solve
the structured polygon prediction problem and the subsequent depth reconstruction prob-
lem by combining depth cameras and machine vision algorithms. A comprehensive solution
consisting of deep learning based object detection, image processing, combining RGB-D in-
formation and a task management system is proposed in [20]. The position of objects, in the
case of [21] — hands, is performed using a single depth camera without markers using a deep
neural network based on a synthetic data set. In general, there are many unresolved prob-
lems in the field related to the cameras used, data sets and the general focus on statistical
characteristics [22].

Within this study, a comparative analysis of the neural network models FCRN-DepthPre-
diction [23], AlexNet [15], and VGG [16], capable of estimating depth from an image obtained
from an ordinary monocular camera, was carried out. The analysis showed that methods for
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constructing depth maps based on neural networks show a relatively low level of accuracy
for scenes with objects located far enough from the camera lens. It should also be noted
that these solutions do not provide an estimate of the distances between the camera lens
and detected objects in metric units, which excludes the use of neural network methods to
obtain depth maps within current study. Accordingly, it was decided to use the RealSense
D435 depth camera [4] since this technology for obtaining a depth map shows high accuracy
compared to analogues [24], and also allows estimating the distance between the camera lens
and detected objects in low-light scenes [4].

Thus, this study proposes an approach for estimating the spatial position and geometric
characteristics of environmental objects from images obtained using a RealSense D435 depth
camera [4]. The proposed approach is based on the combined solution of object detection
and segmentation and the problem of estimating the distances between the camera lens and
detected objects.

2. Development of an approach for determining the spatial
position and geometric characteristics of objects from images
using machine learning methods

The current study represents the author’s method for solving the problem of estimating
the spatial position and geometric characteristics of scene objects from images. Within the
proposed approach, the source of images is a RealSense D435 camera, mounted vertically
on the ceiling of a premises in such a way that the optical axis of the camera lens is in the
horizontal plane, and the walls of the room are out of the frame.

The proposed approach involves the implementation of several preliminary steps, per-
formed once during the process of deploying the corresponding solution in the premises
under study. As part of this preliminary stage, the distortion effect and perspective distor-
tion are eliminated, the parameters of the scene and video camera are assessed. For this
purpose, firstly the initial camera calibration is carried out according to the method [25]:
the calibration eliminates the effect of distortion (radial and tangential distortions) and per-
spective distortions, which leads to an increase in the accuracy of transforming the image
coordinates into the coordinates of the real world. The use of this calibration method allows
to determine of the main matrix of the camera, containing focal lengths and optical centers,
distortion coefficient, rotation and displacement vectors. All this data is essential for the
proposed solution to work.

The next step of the preliminary stage is the evaluation of the relevant viewing angles of
the video camera along the horizontal (Alpha) and vertical (Betta) image axes. Using camera
lens viewing angles as viewing angles becomes impossible since eliminating of the distortion
effect leads to loss of the border parts of the image. Thus, the determination of viewing
angles should be carried out experimentally, by estimating the size of a visible segment of
a flat surface, located at a known distance from the camera lens and oriented perpendicular
to the optical axis of the camera.

The last step in the preliminary stage is the estimation of scene parameters. The assess-
ment of the scene under study is carried out experimentally: using the known coordinates
of the center of the scene (𝑥𝑐, 𝑦𝑐), located strictly under the camera, the vertical distance 𝐻
from the floor to the camera lens is measured. In this case, the coordinates of the center of
the scene will be as follows:

𝐶enter = (𝑥𝑐, 𝑦𝑐, 𝐻).
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The center of the image coincides with the center of the scene up to the 𝑧 coordi-
nate. Thus, for the center of the image 𝑐im = (𝑥𝑐im , 𝑦𝑐im), the following expression is valid:
𝑥𝑐im → 𝑥𝑐, 𝑦𝑐im → 𝑦𝑐. Thus, the center of the scene under study is displayed on the central
pixel of an image obtained from a camera.

Considering the preliminary steps above, the following approach was proposed for assess-
ing the spatial position and geometric characteristics of environmental objects. The devel-
oped approach includes the following main stages.

1. Detection of objects in the considered image:
a) transfer of the image received from the RealSense D435 camera [4] to the Mask

R-CNN neural network model [6];
b) determination the number of objects in the image and their belongness to a certain

class of objects;
c) determination of objects’ boxes;
d) determination of five reference points for each box: vertices and the center of the

box.
2. Determination of the spatial areas of the scene associated with the pixels of the image

under study.
3. Determination of the height, size and spatial coordinates of objects detected in the

image.

The proposed approach contains three key stages, each of them is aimed at solving
a separate group of subtasks. Let’s consider these stages in more detail.

2.1. Detection of objects in the considered image

At the first stage, the image obtained from the RealSense D435 camera [4] is transferred to
the Mask R-CNN neural network model [6], which searches for the coordinates of objects
in the image, determines the number of objects and their belongness to certain classes of
objects. The inception blocks that are used in this neural network are analogous to those
in the Inception-V1 neural network, where the feature map obtained in the previous layer
is processed in parallel by four different branches. The first branch of the Inception block is
a convolution with a filter (1×1×1), the second and third branches contain two consecutive
convolutional layers with filters (1×1×1) and (3×3×3), respectively, and the fourth branch
contains two consecutive layers — Max-Pool with a field (3×3×3) and a convolutional layer
(1×1×1). Further, the resulting feature map is formed by concatenating the feature maps
obtained using all four branches of the Inception module.

The first layers of the Mask R-CNN model are alternating 3D convolutional and pooling
layers followed by a sequence of alternating Inception blocks and pooling layers. The output
of this neural network is a (1×1×1) 3D convolutional layer. The output feature map of this
layer is “stretched” into a vector, the size of which corresponds to the number of classes
under consideration.

The neural network of this architecture is capable of processing video fragments of various
lengths, each frame is a three-channel colour image of the RGB colour space when processing
an image, the neural network model returns the number of objects found and a set of arrays
(boxes, classes, masks, degree of correspondence).

Within the proposed approach, it was decided to use boxes to subsequent by determine
the key points of objects in the images, since they can be used to obtain all the required
information about the objects under study, and furthermore, the use of boxes has a positive
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effect on the computational complexity of the proposed approach. Boxes are arrays, each of
which consists of four extreme points, corresponding to rectangular areas in which objects
are located. Based on the result of box detection, a set of reference points is formed for
each box. Such a set consists of the coordinates of the vertices and the geometric center of
the associated box. Thus, the result of applying the Mask R-CNN neural network model
to a certain image is an array 𝑂, which consists of a set of sets of reference points for
the detected boxes (Points𝑗) and of a set of classes (Cls𝑗), corresponding to the detected
objects Ob𝑗.

2.2. Determination of the spatial areas of the scene associated with the pixels
of the image under study obtained from the RealSense D435 camera

Let us consider the developed algorithm for determining the spatial areas of the scene cor-
responding to the pixels of the considered image. Assume that there is an image of the floor
of a certain scene without any objects. The central pixel of the image 𝑃𝑐, located directly
under the camera, corresponds in space to a certain square in the center of the scene Fig𝑐
with area 𝑆𝑐. However, if we consider not the central pixel, but some arbitrary pixel of the
image 𝑃𝑖, then the situation will be different. In this case, a certain quadrangle Fig𝑖 with
area 𝑆𝑖 will correspond to pixel 𝑃𝑖 in space, and 𝑆𝑐! = 𝑆𝑖. This circumstance is due to the
fact that parts of the scene, offset from the center of the scene, are observed by the camera
at a certain angle, and thus a larger area of space is associated with each pixel of the image.
Let us consider in more detail the solution of the problem of associating image pixels and the
corresponding spatial areas under the conditions specified above: only the floor is present in
the scene image, the camera is fixed perpendicular to the floor plane.

Let the size of the image under study in pixels along the horizontal and vertical axes be
equal to Imgpix𝑥 and Imgpix𝑦 , respectively. In this case, the indices of the central pixel 𝑃𝑐 of
the image can be determined as follows:

𝑃𝑐(𝑥; 𝑦) =

(︂
Imgpix𝑥

2
;
Imgpix𝑦

2

)︂
.

As mentioned earlier, the central pixel 𝑃𝑐 of the image in space corresponds to a certain
square 𝐹𝑖𝑔𝑐 in the center of the scene. Each of the sides of a given square is deflected from
the normal to the 𝑋𝑌 plane by some planar angle in the 𝑋𝑍 or 𝑌 𝑍 planes. Accordingly,
each of the vertices of this square is deviated from the normal to the 𝑋𝑌 plane by some
planar angles in the 𝑋𝑍 and 𝑌 𝑍 planes. Similarly, angular deviation occurs for an arbitrary
pixel 𝑃𝑖 with indices along the horizontal and vertical axes 𝑖pix𝑥 and 𝑖pix𝑦 , the corresponding
deviation values can be determined as follows:

𝑎𝑛𝑔 𝑑𝑒𝑣 𝑥𝑃𝑖
=

[︃
− Alpha

imgpix𝑥·2
+

(︂
𝑖pix𝑥−

imgpix𝑥
2

)︂
Alpha

imgpix𝑥
;

Alpha

imgpix𝑥·2
+

(︂
𝑖pix𝑥−

imgpix𝑥
2

)︂
Alpha

imgpix𝑥

]︃
,

𝑎𝑛𝑔 𝑑𝑒𝑣 𝑦𝑃𝑖
=

[︃
− Betta

imgpix𝑦·2
+

(︂
𝑖pix𝑦−

imgpix𝑦
2

)︂
Betta

imgpix𝑦
;

Betta

imgpix𝑦·2
+

(︂
𝑖pix𝑦−

imgpix𝑦
2

)︂
Betta

imgpix𝑦

]︃
.

The positions of the vertices of the spatial area of the scene covered by this pixel 𝑃𝑖,
respectively, can be determined as follows:
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1𝑖 :

(︃
tg

[︃
Alpha

imgpix𝑥·2
+

(︂
𝑖pix𝑥−

imgpix𝑥
2

)︂
Alpha

imgpix𝑥

]︃
𝐻; tg

[︃
Betta

imgpix𝑦·2
+

(︂
𝑖pix𝑦−

imgpix𝑦
2

)︂
Betta

imgpix𝑦

]︃
𝐻

)︃
,

2𝑖 :

(︃
tg

[︃
− Alpha

imgpix𝑥·2
+

(︂
𝑖pix𝑥−

imgpix𝑥
2

)︂
Alpha

imgpix𝑥

]︃
𝐻; tg

[︃
Betta

imgpix𝑦·2
+

(︂
𝑖pix𝑦−

imgpix𝑦
2

)︂
Betta

imgpix𝑦

]︃
𝐻

)︃
,

3𝑖 :

(︃
tg

[︃
− Alpha

imgpix𝑥·2
+

(︂
𝑖pix𝑥−

imgpix𝑥
2

)︂
Alpha

imgpix𝑥

]︃
𝐻; tg

[︃
− Betta

imgpix𝑦·2
+

(︂
𝑖pix𝑦−

imgpix𝑦
2

)︂
Betta

imgpix𝑦

]︃
𝐻

)︃
,

4𝑖 :

(︃
tg

[︃
Alpha

imgpix𝑥·2
+

(︂
𝑖pix𝑥−

imgpix𝑥
2

)︂
Alpha

imgpix𝑥

]︃
𝐻; tg

[︃
− Betta

imgpix𝑦·2
+

(︂
𝑖pix𝑦−

imgpix𝑦
2

)︂
Betta

imgpix𝑦

]︃
𝐻

)︃
.

In accordance with the above expressions, for each pixel 𝑃𝑖, the vertices of the spacial
area that correspond to the given pixel can be found. For each such area, its center 𝐶𝑖 can
be estimated as the arithmetic mean of the coordinates of its vertices:

𝐶𝑖 =

(︃
1

4

4∑︁
𝑘=1

𝑘𝑖𝑥 ;
1

4

4∑︁
𝑘=1

𝑘𝑖𝑦

)︃
.

Thus, as a result of this stage, an array of centers of spatial areas of the scene for pixels
is formed, corresponding to the reference points of the boxes of objects from the Points𝑗 sets
included in the array 𝑂.

2.3. Determination of the height, size and spatial coordinates of objects detected
in the image

At the final stage of the developed approach, the height, size and spatial coordinates of
the objects Ob𝑗 detected in the image are determinated. The input to this stage is the
information about the centers of the spatial areas (𝐶𝑖) obtained in the second stage for
pixels 𝑃𝑖, corresponding to the reference points of the boxes of objects from the Points𝑗
sets. For each such center 𝐶𝑖, the distance from the camera lens to a given area of space is
calculated in accordance with the following expression:

𝐷(𝐶𝑖)floor =
√︁
𝐶2

𝑖𝑥
+ 𝐶2

𝑖𝑦
+𝐻2.

Thus, we get the expected distances 𝐷(𝐶𝑖)floor, which would be associated with each
considered pixel 𝑃𝑖 of the image, if the scene were a flat floor, with no objects on it.

Further, for the pixels 𝑃𝑖, corresponding to the reference points of the boxes of objects
Ob𝑗, the distances 𝐷(𝐶𝑖)fact to the centers of the actual spatial areas of the scene associated
with the pixels 𝑃𝑖 are determined (Fig. 1, a) using the RealSense D435 camera. Now we can
subtract from the set of expected distances 𝐷(𝐶)floor, the actual distances 𝐷(𝐶)fact:

𝐷(𝐶)delta = 𝐷(𝐶)floor −𝐷(𝐶)fact.

Each element of the obtained difference set 𝐷(𝐶)delta represents a certain distance 𝐵,
equal to the difference between the distance that would be between the camera and the spatial
area associated with the corresponding pixel 𝑃𝑖, if a section of the floor were associated with
this pixel (distance 𝐴 + 𝐵), and the actual distance between the spatial area displayed in
this pixel and the camera — distance 𝐴 (Fig. 1, b).
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a b

Fig. 1. Illustration of a typical scenes with some arbitrary object (a) and with an indication of the
investigated distances (b)

It is important to note that in the absence of errors, all elements of the 𝐷(𝐶)delta set
should be greater than or equal to 0. Then, using the values defined above, the heights of
objects Ob𝑗 detected on the scene can be determined calculating of the height of each object
Ob𝑗 is carried out in two stages. At the first stage, for each target pixel 𝑃𝑗𝑖 corresponding
to one of the reference points (Points𝑗) from the Points𝑗 set (the set of reference points of
the object Ob𝑗 box), the vertical displacement of the spatial area 𝐶𝑗𝑖 relative to the floor is
determined:

𝐻(𝐶𝑗𝑖) =
𝐻

𝐴+𝐵
𝐵 =

𝐻

𝐷(𝐶𝑗𝑖)floor
𝐷(𝐶𝑗𝑖)delta.

Thus, based on the number of reference points of the object (Points𝑗 set), a series of
estimates of the height of the object Ob𝑗 is formed. At the second stage, the resulting
estimate of the object’s height 𝐻(Ob𝑗) is calculated:

𝐻(Ob𝑗) =
5∑︁

𝑖=1

𝐻(𝐶𝑗𝑖)𝑤𝑖,

where 𝑖 is the index of the reference point of the object Ob𝑗, 𝑤 are the weight coefficients
of the reference points, equal to 0.7 for the reference points associated with the geometric
centers of the objects boxes, and 0.075 for other reference points. Based on the results of
these calculations, for each object Ob𝑗 detected in the image, a final conclusion about its
height is formed.

After the resulting estimate of object’s height 𝐻(Ob𝑗) is obtained for each object Ob𝑗

on the scene, the determination of two other quantities characterizing linear dimentions of
objects is carried out as follows:

1. First, the spatial coordinates of the reference points of the object’s Ob𝑗 box are deter-
mined: Points𝑗𝑖 = (𝐶𝑗𝑖𝑥 , 𝐶𝑗𝑖𝑦 , 𝐻(Ob𝑗)), 𝑖 = [1, . . . ,𝑚]), where 𝐶𝑗 is an array of spatial
areas centers associated with pixels corresponding to the reference points of the ob-
ject’s box (Points𝑗 set), 𝐻(Ob𝑗) is the final estimate of the object’s height, 𝑚 = 5 is
the number of reference points of the box of this object.

2. An estimate of the length of an object Ob𝑗 can be defined as the distance between
two adjacent reference points. In this work, the length of the object was estimated in
accordance with the following expression:

𝐿(Ob𝑗) = |Points𝑗2 − Points𝑗1| .
3. In a similar way, a width estimation for the object Ob𝑗 can be determined. In this

work, the width estimate was determined as follows:

𝑊 (Ob𝑗) = |Points𝑗3 − Points𝑗2| .
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Fig. 2. Step-by-step results of the proposed approach approbation on a certain scene: RGB image
of the scene with 2–3 simple objects observed; result of Mask R-CNN operation with highlighted
boxes and signed object classes; depth map of the investigated scene obtained using the RealSense
D435 camera; depth map of the investigated scene with highlighted boxes and signed object classes;
the resulting RGB image with the signed parameters of the objects

To estimate the location of objects, it was decided to take the position of the camera lens
as the origin of the reference system. The location of object was approximated by estimates
of the spatial positions of the center of these objects. For each object detected in the image,
the spatial position of its center was determined in accordance with the following expression:

𝐶(Ob𝑗) =

(︂
𝐶𝑗5𝑥 , 𝐶𝑗5𝑦 , 𝐻 − 𝐻(Ob𝑗)

2

)︂
,

where 𝐶𝑗5 is the position of the center of the spatial area corresponding to the reference point
associated with the geometric center of this object’s box, 𝐻 is the distance from the camera
lens to the floor of the scene under study along the vertical axis, 𝐻(Ob𝑗) is the estimate of
the height of the object obtained at the previous stage.

Thus, based on the above calculations for each object Ob𝑗 (∀Ob𝑗 ∈ 𝑂) detected in the
image, it is possible to obtain estimated values of the three key characteristics of this object
(height, length, and width), as well as obtain an estimate of the location of this object.

Figure 2 below shows the step-by-step results of the approbation of the developed ap-
proach to determining the spatial position and geometric characteristics of objects in a certain
image.

The first frame of Fig. 2 shows an RGB image of the considering scene. The next one,
accordingly to the developed approach, shows the result of objects detection and classification
using the Mask R-CNN neural network model. Three objects were detected in the observed
image: a chair, a table and a wardrobe. Further, as shown in the third frame depth maps
are built for the scene using the RealSense D435 camera. The fourth frame shows the depth
map of the scene under study with highlighted boxes and labelled object classes. The results
of assessing the spatial position and sizes of the detected objects can be observed in the last
frame of the Fig. 2.

Further we will consider the implementation of the proposed approach in terms of quality
of estimation the spatial position and size of objects from images.

3. Testing of the Developed Approach for determining the spatial
position and geometric characteristics of objects from an image

Approbation and quality assessment of the proposed approach was carried out on a test
dataset that includes 12 000 images of various scenes with office premises. This dataset was
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generated using the RealSense D435 depth camera [4]. Each image 𝐼𝑖, included in the test
dataset corresponds to a certain set of parameter values 𝑃𝑖. These parameters are described
below:
A. Target type 𝑇 . Includes 4 different object classes: cabinets (1), chairs (2), tables (3),

plants (4).
B. Size of the target object 𝑅. As a parameter characterizing the size of the object, the

average value of the object’s projections on each of the coordinate axes was chosen —
𝑙 (m). Thus, each target will be assigned to one of the following categories based on
the value of 𝑙: 1 — [0,0.5], 2 — [0.5,1], 3 — [1,2].

C. Scene illumination level 𝐿. The test dataset includes images generated at various scene
illumination levels: 50, 70 and 100 %, where the standard illumination level for office
premises is taken as 100 % [17].

The test dataset was divided into three subgroups of images differing in the level of scene
illumination: 50, 70, and 100 %. Each selected subgroup of images includes 4000 images
containing objects of the following types and sizes: 600 tables of size 2; 150 plants size 1;
50 plants size 2; 8000 chairs in size 1; 4000 chairs of size 2 and 400 cabinets of size 3. As
a result of applying the Mask R-CNN neural network model [6] for a subgroup of images
with 100 % scene illumination, the following number of objects were detected and correctly
classified in Table 1.

Based on the data obtained for all three groups of images, the resulting percentages of
detected and correctly classified objects were determined for each selected subgroup with
a given level of scene illumination. The result obtained are presented in Table 2.

T a b l e 1. The proportion of detected and correctly classified objects (illumination level —
100 %)

Target
type 𝑇

Target
size 𝑅

The percentage of
detected objects, %

The share of correctly classified objects from
the number of successfully detected, %

Table 2 89 60
Plant 1 88 49
Plant 2 88 48
Chair 1 90 50
Chair 2 89 50
Cabinet 3 90 80

T a b l e 2. The proportion of detected and correctly classified objects using the Mask R-CNN
neural network model [6]

Target type 𝑇
Target
size 𝑅

The share of detected and correctly classified objects
At 100 %

illumination
At 70 %

illumination
At 50 %

illumination

Table 2 0.53 0.37 0.26
Plant 1 0.43 0.3 0.22
Plant 2 0.42 0.29 0.21
Chair 1 0.45 0.32 0.22
Chair 2 0.45 0.32 0.23
Cabinet 3 0.72 0.51 0.36

Average share 0.5 0.35 0.25
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From the data presented above, we can conclude that the accuracy of object detection
and classification using the Mask R-CNN neural network model [6] significantly depends on
the illumination level of the scene and decreases with decreasing illumination level. It is
also important to note that the class of the object affects the quality of the classification,
in particular, the calculated indicators have lower values for objects of the following classes:
plant and chair.

To directly assess the quality of the developed approach for determining the spatial
position and size of objects from images, various quantitative estimates of the accuracy of
the proposed solution were formed depending on the scene parameters and the characteristics
of the target objects. The corresponding indicators were determined as follows:

1. The relative error was taken as an indicator of the accuracy of determining the sizes
of scene objects, which was determined as follows:

|𝑎real − 𝑎|
⧸︂(︂

𝑎real + 𝑎

2

)︂
,

where 𝑎real is the real value of the object size; 𝑎 is the value calculated based on the data
obtained using the approach considered. The values 𝑎real and 𝑎 were determined directly as
average values of the object’s projections onto each of the coordinate axes. Thus, the lower
the value of the relative error, the higher the accuracy of determining the size of objects
using the developed approach.

Figure 3 below shows a diagram of the obtained values of the relative error in determining
the sizes for each type of objects for a subgroup of images with a scene illumination equal
to 100 %.

The figure above shows a box plot diagram showing the distribution of the obtained
values of the relative error for each type of objects. In this chart, the boxes are bound by the
first and third quartiles (25th and 75th percentiles, respectively). The average error estimate
is shown as a cross in the middle of the boxes, outliers are shown as dots on the graph. The
ends of the whiskers are the edges of a statistically significant sample (without outliers),
determined in accordance with the following expressions:

𝑋1 = 𝑄1 − 𝑘(𝑄3 −𝑄1), 𝑋2 = 𝑄3 + 𝑘(𝑄3 −𝑄1),

where 𝑋1 is the lower border of the whiskers; 𝑋2 is the upper border of the whiskers; 𝑄1 is
the first quartile; 𝑄3 is the third quartile; 𝑘 is the coefficient, the most used value of which
is equal to 1.5.

From the data presented in Fig. 3, we can conclude that the developed approach demon-
strates the best results when estimating sizes for objects of the cabinet (𝑅 = 3) and table
(𝑅 = 2) classes. The mean error values for objects of these classes were 0.1207 and 0.1296,
respectively. The developed approach shows a slightly worse quality of determining the size
of objects for classes such as chair (𝑅 = 1, 2), the obtained values of the average error
for objects of these classes were 0.1416 and 0.1429, respectively. The developed approach
demonstrated the worst results for objects of plant classes (𝑅 = 1, 2). It is assumed that
these results are related to the geometric features of these objects. It is also important to
note that for objects of the same class but different sizes, on average, there is no significant
change in the values of the relative error. Thus, we can conclude that, up to a certain limit,
the actual sizes of objects do not affect the quality of determining the sizes of objects in
the context of the developed approach. However, it should also be noted that for objects of
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Fig. 3. Diagram of the obtained values of the relative error in determining the sizes for each type
of objects

Fig. 4. The range of the obtained values of the relative error in determining the object sizes for all
levels of illumination

extremely small size, this conclusion will not be valid, since in this case, errors in construct-
ing depth maps, as well as other errors of the developed approach, will play a significantly
greater role.

Figure 4 below shows the averaged values of the relative error in determining the size of
objects from images at different levels of illumination.

From data presented above it can be concluded that for all types of objects, regardless
of their size, there is a significant increase of the relative error in determining the size of
object with decreasing scene illumination level. At the same time an increase in error growth
rate is observed when going from the illumination level 100 to 70 % and from 70 to 50 %,
respectively. In particular, the relative error between illumination levels from 100 to 70 %
increases by about 7.5 % for each 1 % decrease in illumination level, and average 9.5 % when
illumination levels range from 70 to 50 %. These dependencies are similar for all classes
of objects under consideration, regardless of their size. The class-averaged values of the
relative error for scenes with different illumination levels are 0.1449, 0.3313, and 0.6332 for
illumination levels of 100, 70, and 50 %, respectively.

The results obtained can be explained by the fact that with a significant decrease of illu-
mination level, the accuracy of object detection also decreases. Moreover, additional errors
arise when constructing depth maps, which significantly affects the quality of determining
the size of objects. This situation is observed when applying the developed approach to
determining the spatial position and size for objects in images with an illumination level of
50 %. It is also important to note that a decrease in the illumination level has an extremely



90 M.A. Letenkov, E.O. Cherskikh

negative impact on the quality of object detection and classification, as a result of which
most of the objects presented in the scene remain unnoticed or incorrectly classified.

Thus, it can be concluded that the proposed approach demonstrates acceptable quality
of determining the size of objects for images with illumination levels of 100 and 70 %.

2. As an accuracy indicator for determining the spatial position of objects, the value of
the relative deviation was chosen, which is determined according to the expression:

𝐸𝑟𝑟 =
|𝑟real − 𝑟|

𝑙
,

where 𝑟real is the real position of the object; 𝑟 is the position of the object, calculated using
the developed approach; 𝑙 is the average value of the object projection lengths onto each
of the coordinate axes. Thus, the lower the value of the relative deviation, the higher the
accuracy of determination the spatial positions of objects.

Figure 5 below shows the range of the obtained relative deviation values while determining
the spatial position of objects for a subgroup of images with a scene illumination of 100 %.

According to the data presented in the figure above, the developed approach demonstrates
the best average values of the relative deviation for objects of the cabinet (𝑅 = 3) and table
(𝑅 = 2) classes. The average relative deviation values for objects of these classes were 0.0919
and 0.0932, respectively. Slightly worse results are obtained for objects of the classes chair
and plant (𝑅 = 2), the relative deviation values were 1.1001 and 0.1039, respectively. The
worst results in determining the spatial position of objects were demonstrated for objects
of the plant and chair classes (𝑅 = 1), the average value of the relative deviation for these
classes was 0.1098 and 0.1071, respectively. It should be noted that the smallest averaged
values of the relative deviation are observed for objects of sizes 𝑅 = 3 and 𝑅 = 2. When
moving to smaller sizes of target objects (𝑅 = 1), an increase in the averaged values of the
relative deviation is observed. This increase can be explained by a decrease in accuracy of
object detection as the size of the object under consideration decreases, as well as a higher
specific level of errors arising in the process of reconstructing depth maps. It should also
be noted that the variance estimate of the relative deviation for objects of the plant class
(𝑅 = 1, 2) is much higher, and for objects of the table class (𝑅 = 2) is lower than the
average for the samples. This distribution can be explained by the geometric features of
these objects: high shape complexity of the plants and the shape simplicity of the table,
respectively.

Figure 6 below shows the range of the obtained relative deviation values when determining
the spatial position of objects at different levels of illumination.

Fig. 5. The range of the obtained relative deviation values while determining the spatial position
of objects for a subgroup of images with a scene illumination of 100 %
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Fig. 6. The range of the obtained values of the relative error in determining the size of objects for
different levels of illumination of the scene

According to the data presented in the figure above, it can be seen that the proposed ap-
proach demonstrates high accuracy in determining the spatial position of objects for images
illumination levels of 100 and 70 %. The class-averaged relative deviation values for scenes
with illumination levels of 100 and 70 % are 0.1010 and 0.1624, respectively. With a de-
crease in illumination, a critical decrease in the quality of determining the spatial position
of objects is observed, and at 50 % illumination level, the approach becomes unsuitable for
practical application. The class-averaged relative deviation for scenes with 50 % illumination
is 0.3477. Based on the results obtained, it can be concluded that the developed approach
demonstrates a fairly high accuracy in determining the spatial position of objects for images
with illumination levels of 100 and 70 %.

Based on the results of the experimental assessment, it can be concluded that the pro-
posed solution allows successfully determining the size and spatial position of objects of
various classes from images with illumination levels of 100 and 70 %.

Conclusion

Based on the results of approbation of the proposed approach on a test set of 12 000 images,
the developed solution showed an acceptable level of accuracy in determining the dimensions
and spatial position of objects for images with illumination levels of 100 and 70 %. The class-
averaged values of the relative error in determining the object sizes for the corresponding
image sets were 0.1449 and 0.3313, respectively, and the class-averaged values of the relative
deviation in determining the spatial position of objects for these image subsets were 0.1010
and 0.1624. To increase the accuracy of the developed approach, the use of object masks
should be tested, which can have a positive effect on the accuracy of determining the target
parameters. The proposed approach can be used to improve existing systems for detecting
and classifying objects or implemented as an independent system in various domestic or
industrial premises. In addition, the developed solution may be of interest when combined
with existing algorithms for detecting objects and positioning them in space. It should be
noted that the Mask R-CNN neural network model [6] used within this approach does not
provide an acceptable level of accuracy in detecting and classifying objects. Thus, further
work will be aimed at upgrading the proposed solution through the use of more high-precision
neural network models, as well as by combining the results of processing series of individual
images.
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Аннотация

В контексте определения характеристик киберфизической среды одной из актуальных про-
блем является определение пространственных координат, местоположения и размеров объек-
тов внешнего окружения. В рамках настоящего исследования для решения указанной про-
блемы был предложен подход к оценке пространственного положения и геометрических ха-
рактеристик объектов окружающей среды по изображениям, основанный на объединении
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результатов детектирования объектов с использованием нейросетевой модели Mask R-CNN,
а также результатов восстановления карт глубины наблюдаемой сцены с помощью камеры
RealSense D435.

В работе представлены авторские алгоритмы анализа геометрических свойств наблюдае-
мых на изображении областей сцены, а также комплементарные алгоритмы оценки размеров
и положения объектов. Оценка качества разработанного подхода проводилась на основе тесто-
вого набора данных, включающего 12 000 изображений, сформированных при трех различных
уровнях освещенности сцены: 100, 70 и 50 %. В рамках эксперимента найдены усредненные по
классам значения относительной ошибки вычисления размеров объектов для соответствую-
щих наборов изображений: 0.1449, 0.3313, 0.6332. Значения относительного отклонения при
определении пространственного положения объектов по результатам тестирования составили
0.1010, 0.1624, 0.3477. Таким образом, предлагаемое решение позволяет успешно определять
размеры и пространственное положение объектов различных классов по изображениям сцены
с уровнями освещенности 100 и 70 %.

Ключевые слова: оценка размера объекта, оценка пространственного положения, обнару-
жение объекта, реконструкция карты глубины, R-CNN-маска, Intel RealSense.

Цитирование: Летенков М.А., Черских Е.О. Подход к определению пространственного
положения и размеров объектов сцены по изображению с использованием методов машинно-
го обучения. Вычислительные технологии. 2024; 29(2):79–94. DOI:10.25743/ICT.2024.29.2.007.
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